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If F is a Fr~chet differentiable functional on C[, ], b =
(b(t)IO ( t ( 1) is a Erownian motion, and B =o{b~s)Is ( ti, Clark's""

-t
formula states that F(b) = J0 E'pF(s'I]; *I lds),' hr d~) i

-sG

the measure defining the Fr~chet derivative of F at b. In this paper we _

extend Clark's formula to the more general class of weakly H-differentiable

functionals, and we give a simple proof based on Malliavin's calculus. Again"-.

using Malliavin calculus techniques, we also derive Haussmann's stochastic .,-
integral representation of a fur'ional F(y) of the diffusion process dy =" !

m(t,y)dt + o(t,y)db. In doing this, we show that y(t) is weakly H- -
differentiable if m and 0 have bounded, continuous, first derivatives in v
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SIGNIFICANCE AND EXPLANATION

* In stochastic analysis, we often encounter functionals

Fy(s)i 0 ( a ( t) of a diffusion process y(e)i e.g., the solution of a

stochastic differential equation is a functional of its stochastic input; an

estimate E{x(t)Iy(s), 0 ( s ( t} of a random process x(t) based on

observing y(s), 0 < a 4 t, is a functional of y(e). A theory of such

functionals making essential use of the randomness in y(o) is therefore of

interest. For example, it is possible, and useful, to find fairly explicit

* representations of such functionals by stochastic integrals, and formulas of

Clark and Haussmann give such representations in the cases that F is

Fr6chet differentiable (plus, technical conditions) and either y is Brownian

(Clark) or y is an Ito process (Haussmann).

, The recent invention of the so-called Malliavin calculus has also led to

new advances in the analysis of functionals of Brownian motion. Basically,

the Malliavin calculus is a method for integrating by parts in function space

and with respect to Wiener measure. One version of the theory can be

developed through the use of the Clark-Haussmann formulas (Bismut). Another

approach uses a second-order, self-adjoint operator on functionals and the

natural concept of differentiation in Wiener space, the H-derivative.' Let

H - {yjy(t) - 0 yl'(s)ds, f0 (Y'(s)2 )ds 
<  

). Then if b() is a Brownian

motion, b(,) + Y(o) generates a measure absolutely continuous w.r.t. Wiener

measure iff Y e H. Hence it makes sense to consider only derivatives in H

directions, DF(b)-y = i F(b+sy)I , where y e H.

-In this paper,-w show that this second form of Malliavin's calculus

leads to a very simple derivation of Clark's integral representation.of

F(b(*)), where b(o) is Brownian, and, at the same time, extend the result

to the broader and more natural class of H-differentiable functionals.- This

demonstrates the equivalence of the two approaches to Malliavin's calculus and

leads to a nice interpretation of Clark's formula.- We then use Malliavin

Ncalculus techniques to rederive Haussmann's representation of F(y) if y is

a diffusion process. In doing this we show under fairly weak smoothness

conditions on the diffusion coefficients of y(o), that y(t) must itself be

H-differentiable.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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I4ALLIAVIN'S CALCULUS AND STOCHASTIC INTEGRAL
REPRESENTATIONS OF FUNCTIONALS OF DIFFUSION PROCESSES

Daniel Ocone

1. Introduction

Let (b(t)10 4 t 4 1) be a standard, Brownian motion and B = o(b(s)o oa 4 t) the

filtration it generates. Suppose F(b) is a functional on Brownian paths, and

E[F 2 (b)] < m. Then, according to martingale representation theory, there is a P-adapted

process f(t) such that E[F(.)IB] = f(s)db(s), almost surely, for every 0 C t C 1.

In [2], Clark showed that if F is Frdchet differentiable and satisfies certain

technical regularity conditions, then

F
f(t) - E{A ((s,1]; ")1B) a.s.

Ffor each 0 4 t < 1, where A (du;b) denotes the signed measure associated to the

Frtchet derivative dF(b). As a consequence

(1.1) F(b) - E[l [LF((s,1] .)IB Idb(s)

In (5], Haussmann extended this formula to functionals F(y(-)) of processes y(t)

satisfying

(1.2) dy = m(t,y)dt + 0(t,y)db, y(O) = y0 e R

where m(t,y) and 0(t,y) are causal functionals of y(-). Since y(t) = y(t,b), G(b)

F(y(e,b)) defines a Brownian functional, and, roughly speaking,to find a representation

for F(y) one applies (1.1) to G. Ignoring hypothesis on m, a and F, Haussmann's

result states that

(1.3) F(y) - f 0 {(s 1 ] AF(du;y)Z(u)z'l(s)B s) (s,y)db(s)

in which Z solves the equation of first variation associated to (1.2), (see (4.5)).

(1.1) and (1.3) have appropriate versions for multi-dimensional y and h.

Other proofs of (1.1) and (1.3) than those originally given by Clark and Haussmann

have become available. Davis [3] shows that the form of (1.3) arises quite naturally from

potential theoretic arguments. Haussmann [6] and Rismut [1] recover these formulas neatly

*' Mathematics Department, Rutgers University, New Brunswick, NJ 08903.

Sponsored by the tlnitp-.i States Army under Contract No. O)AAG29-SO-C-0041.
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by using a Girsanov transformation, and, in Sismut's case, results on stochastic flows.

These alternate approaches do not significantly generalize the conditions on F, b, and

Bismut [11 also contains a significant application of 1.3). He uses (1.3) as the

basis for an alternative development of the Malliavin calculus. The Malliavin calculus,

basically a theory of integration by parts for functionals on Wiener space, can also be

derived by introducing a self-adjoint operator which acts on square integrable, Wiener

functionals and which is the infinite dimensional analogue of the Ornstein-Uhlenbeck

generator (Ialliavin [8], Shigekawa (111, Stroock (9, 101). [1) shows that the Haussmann

formula in effect achieves an integration by parts.

*'; It is of interest, therefore, to determine whether the Clark and Haussmann formulas

are more general than the Mtalliavin calculus, or, conversely, whether the operator version

of the calculus leads to these formulas. In this paper, we resolve this issue by using the

Malliavin calculus, in its manifestation due to Stroock [9] and Shigekawa [11], to prove

(1.1) and (1.3). The exercise contains several points of interest. First we find that

Clark's formula, (1.1), is a simple, immediate consequence of the most basic properties of

the Malliavin calculus, and so we obtain a nice explanation of its form. Second, we

identify what seems to be the proper class of functionals F for which to frame Clark's

formula (see theorem (3.1)). These are the weakly H-differentiable functionals ([II),

i.e. functionals that are differentiable in a weak, Sobolev sense in the direction of any

absolutely continuous function. Our formulation explains the technical conditions placed

on F in previous statements of Clark's formula; they insure that F be weakly R-

differentiable. Section 2 previews H-differentiability and those elements of the Malliavin

. calculus needed to prove Clark's formula in section 3.

In section 4, we prove Haussann's formula, again using Malliavin calculus results,

.- but restricting the treatment to coefficients m and a such that m(t,y) - m(ty(t))

and o(t,y) - a(t,y(t)). To do so requires that we prove the weak H-differentiability of

'-2
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y(t) under weaker conditions on m and a than have been previously considered (see [9,

101 and [111). This is done in theorem (4.14), in which it is shown that bounded

continuity of the y-derivatives of m and o suffices for weak H-differentiability.

2. Differential Calculus in Wiener Space

This section gives a brief resume of the Malliavin calculus as presented in Stroock

(91 and of the notion of weak H-differentiability (Shigekawa [11I) and its connection to

Stroock's set up. The following notation shall be used in the rest of the paper. (B ,!

P, St) will denote d-dimensional Wiener space with the standard filtration, that is,

a = {b e C([O,T], Rd)jb(O) - 0), pt= (b(s)10 - a - t}, B! B1, and v - Wiener measure

on (B, 8). Ibi - sup Ib(t)l will denote the sup norm on B. We shall also use the
(0,11

Hilbert space

SH - (y e I y is abs. cont. and O <Y(s),y'(s))-ds < ")

ipped with the inner product <1Y2 H - 1 y(s),y(s)ds.

inclusion map, it is well known that (U,H,B) is an abstract Wiener space and that p

extends the Gauss measure on H. We shall be concerned with derivatives of functionals

F : B * R. The Frfchet derivative of F will be written dF(b), or, in its guise as a

d-vector of signed, Sorel measures )(daub) - (A'(dsgb),..., (dub)). in other words

dr(b)*u = fO <u(s),d(dseb)> for u e B.

The derivative appropriate to Wiener space is not the Fr~chet derivative but the

H-derivative.

(2.1) Definitions If DF(b) is an element of H such that

IF(b+y) - F(b) - <Y,DV(b)> I - o(lylH)

for every Y e H, F is said to be H-differentiable at b and DF(b) is called

% its H-derivative.

If F is Fr6chet differentiable and y e H,

dF(b)'y - f1 <Y(s),)!(dsb)> . f1

It follows immediately that F is then H-differentiable and

-3-
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(2.2) DFb)(t) f t XF((sw1] blds

Shigekawa (11] also introduces a notion of weak H-differentiability as follows.

(2.3) Definition: If F(b) - f((Rl1 b),...,(Lnb)) where f : n R is Borel measurable

and I n,...,n  B F is called a cylinder function. F is a smooth Sylinder

function if f e Co().

Let IFIp - 31'IFI p + Ri/PIDFI. and ;H (P ) - {FIF is a Fr~chet diff. cylinder function,
P H

IFlp <"}

f 1~2o4) Definition: a) H(p) : completion of ;(p) with respect to '•

p

b) H
( -  

-) H(p).
p>l

If F e H(p), a sequence (F of differentiable cylinder functions exists such that
n

DFn is Cauchy in LP(fl,M;H). Thus there is a MPv-) convergent subsequence OFn and we

make the

(2.5) Definition DF - lim DFnk . DF is called the weak H-derivative of F.
k-e

(2.6) jeM (Shigekawa [III)

i) DF in (2.5) is well defined.

ii) Smooth cylinder functions are dense in H(p), Vp > 1.

One may readily verify that H(p) is a separable, reflexive Banach space for p > I

and hence that 1.1p bounded subsets of H(p) are relatively (sequentially) weakly

compact. This leads to a useful criterion that F e H(p). Suppose Fn e H(p) Vn and

i) lih IF-Fn I 0 , some q ) 1

(2.7)
ii) sup IF n -

n
- -. Then Fe H(p).

Our definitions so far have introduced a small ambiguity. DF is used to denote both

the H-derivative and the weak H-derivative, although it is possible for DF(b) to be

defined for all B in the sense of (2.1) but not in the sense of (2.5). In deriving the

usual form of Clark's formula, we shall need to identify the two under certain

circumstances.

-4-
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(2.8) Lemma. Let F t B * R satisfy

i) F is continuous and H-differentiable (as in (2.1))

ii) DF(b) is strongly measurable (DF(b) - H-derivative of (2.1))

iii) There exist positive constants K, a such that

IF(b)I + JDF(h)I H C W1 + Ibla)

Then F e H(2) and the weak H-derivative coincides with DF l-almost surely.
(T)(n) (n) (n)_0< t(n)

Proof. Let {T(n)), where T is given by 0 - tO < t () < - 1 , be a
0 1 n

sequence of partitions that becomes dense in (0,11 as n e -. If b e B, let

b(t (n)) - h (nn

b (t) - I (n-t) (n) 
+ 

(t-ti n)M(n) if t(n) t(+)

t n (t -t1 i i+1 i+
ti+1"t i

Likewise define Fn(b) - F(b(n)). For each n, Fn is Fr~chet differentiable and

<DFn(b),y H - <DF(b(n)),Y(n)> . Also, because lim Ib-b(n)I - 0 and Ib(n) 1 Ihl for<Din (b,>H -<Fb )Y H n4ft

every b e B, it is clear from assumptions i) and iii) and dominated convergence that

lia 3(F-F )2 - 0. Thus, to prove that F e H(2), it is enough to show thatn i n
sup IFn12 < - (see (2.7)). However, since (DF n(b),y> H a <DF(b(n) >(n)H (iii) impliessu2I t2 H ~ H

n2 2 (n)),2 + (n)) 2 a 2.
that IF n(b)I + IDF n()I H C IF(bI + IDF(b )I H C K(1 + Ibla)] • It follows

immediately that sup IF n 1 -.
n24 in

Let T(b) be the weak H-derivative of F. It remains to show that r(b) - DF(b)

-a-s, where DF(b) is defined as in (2.1). For this it suffices to show that for each

YeH and t)0,

E{[F(b+ty) - F(b)]G(b)}( - E(G(b) f0 <DF(b+sy),Y)ds])

(2.9)

= E[G(b) ft <(b+sy);Y>H ds
0H

for each G e L (B,U). Indeed, if (2.9) is true, then

(2.10) <DF(b+BY),Y> - <nl(b+sy),y>H
HH

,-e i- a • .. t .* ..- .- . . . . .... . . .
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for all y e H, for (Lebesgue) almost all a, p-a.s. Let % " measure induced on B by

B(.) + sy(') where 0 is a standard, Rd-valued Brownian motion. Since 4i 8 Y a (2.10)

implies that <DF(b),Y>) . <n(b),y>H  for all y e H, 1t-a.s., or, in other words, that

DF(b) - n(b) p-a.s. To establish (2.9), begin by noting that F is the weak limit in

H(2) of a subsequence {F n}. In particular, for every G e L"(B,M) and every

,k d pa 2
y e H, lim 3Wr (b),yG(b)> = 3n(b),yG(b)> Likewise, since e~ L (B,U) uniformly

n ~ H H4 dli

;. for fixed y on compact subsets of e,

lim MDY (b+sy), YG(b)>H
k- k

.', =Z< b), 'Y(b-nY)> 9-8

Hdii

- <l(b+sy), yG(b)>H

and (<DFn (b+sy), yG(b)> H} is uniformly bounded on compact subsets of a. Thus, again
n H

invoking i) - iii),

E(F(b+tY) - ?(b)]G(b) - lrm E[Fn (b+ty) - F n(b]G(b)

-lim z F Dn (b+sy), Y> ds G(b)
k

- z <n(b+sy), Y> ds G(b)

as desired.

The Malliavin calculus introduces another differential operator on L (B,1) which is

the analogue of the finite-dimensional Ornstein-Uhlenbeck operator. To define this most

directly we first recall the Ito-Wiener decomposition

S2(BP) ( n)

where I(n) a (f 1 j l fn-f(s ... S)d$ (').di (* ) 1 C ik - d,

n 1

f e L2 U0,T]n,dx))

-6-
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is the space of nth  order, multiple stochastic integrals. Alternatively stated, if

F e L2IB,I) and p(n) = .ojjIln)

FEL(3,ji) an

n-0

(2.11) Definition
AIP-- P 2(n) F

! ; n-0
if F e D2 - D(A),

D(A) - (F e L2 (a, 1)I n2 lp(n)) 2 < }

0

It turns out (see [9]) that A is a non-positive definite, self-adjoint operator that

generates an Ornetein-Uhlenbeck type Markov semigroup. Moreover, if G(p) -

D2 A {Z[Ip1 P + lAPI) < -), AIG extends consistently to a closed operator Ap on

• LJP(B,P) for p ) 1i that is, APID(Ag) - Aq if q > p. Without causing any ambiguity,

we shall drop the subscript p.

(2.12) Lemma (9] If F, G e D2, then F*G e D

(2.13) Definition. Let F, G - D2*

VFOVG - AFG - F(AG) - G(AF)

A and VF*VG are the basic tools of the malliavin calculus. The following theorem

collects some basic facts about their use.

J (2.14) Theorem [9]

a) Let F, G e D2 and assume i), F Is B.-measurable, ii) G is

!*% o{b(u) - b(t)It 4 u 4 11-measurable. Then

A(FG) - A(G) - G(AF)

b) If F, G e D2, then KVF*VG - -23FAG.

Shigekawa [11] defines A by using higher order weak H derivatives. We prefer

Stroock's direct approach (2.11) since we shall utilize his applications to stochastic

differential equations. However it is important for us to connect D2 to weak H-

differentiability. The notation VFVG introduced in (2.13) begs an analogy to a gradient

inner product. The next result makes this precise.

-7-
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(2.15) Theorm

) D2 C H(2)

.. ii) if P, c e D.then YF*VG < DF,DG>H

N (n) M(n)
Proof. Let F I- F, G - P G where N, N < *. Then results of Shigekawa [11

0 0
directly imply F, G e H(2) and VroVG - <DF,DG> H  For general F e D2 , let

- - . 1(n)1. Hh

N

(2.16) UiS 311% - F1 + I AF - AlW 1 3 =0

- (2.17) lin Z .. y N *F N - Vr.FV - 0

(2.16) is immediate and (2.17 is proved in [93. Since

2
Z ID% - DF I - EV( N - P1)'V(FN - F4)

. ;--2E(r. - F,)A(F - FM)

* DFN is Cauchy in L 2IBPIH). Thus F e H(2). Moreover

ZIYFM-VFM- IDi 2 1 l 101 2 _ D1l121
N H NH H

(2.18) (u 1/2 + /2 2 2

N H H N Hn

(2.17) and (2.18) together imply VF*VP - <DF,DF> H. The general statement (ii) follows

from the polarization identity.
0

The following extension of (2.14) a) will be useful later.

(2.19) C. If F, G e H2 and F is Bt-measurable and G is

O(b(u) - b(t)tt < u < 11-measurable. Then <DPDG>H - 0.

Pf. Approximate F and G by smooth, cylinder functions.

N-8-



3. Clark's formula

In this section we will prove the following theorem and show that it is a general

version of Clark's formula.

(3.1) Theorem. Let F e H(2) and let u(t), 0 C t 1 1 be any bounded, Rdvalued, .-

adapted, measurable process. Then

E(F(b) fl <u(s),db(s)>)} - (<DF(b), * (s)ds>

= E{ <[DF'(s),(s)>ds}

In (3.1), as in Clark's formula, we equate an expression involving F to one involving

DF. In fact, asing the following corollary of (3.1), we may easily derive previous

statements of Clark's formula.

(3.2) Corollary. Assume

i) F is H-differentiable (as in (2.1)) for each b e B

ii) DF is H-measurable

iii) There exist positive constants K and a such that

I"(b)l + IDF(b)jH C x(l + lb a)

Then

(3.3) F(b)- Z (<{[DF(.)]'(s)iB),db(s)> p-a.s.

In particular, if F is also Fr6chet differentiable

(3.4) F(b) - f' <Z[AF((s,.)ID 1,db(s)> -a.s.

Proof. A simple application of martingale representation theory (see, eg. (7]) shows that

(3.3) is equivalent to

(3.5) E{F(b) .f1 <(s),db(s)>} - Z{fl <[DF(b)]'(s),Q(s)>ds)

for all bounded, adapted processes a. However, according to lemma (2.8), F e H(2) and

its weak H-derivative is DF. (3.5) is then immediate from theorem (3.1). (3.4) follows

from (3.3) because (see (2.2)) (DF(s)]'(s) = AF((s,1]pb) if F is Fr6chet

differentiable.

-9-
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The identity (3.4) was first proved by Clark (21 for functionals F that are Vrchet

differentiable and for which the remainder R(b1 ,b2 ) - V(b1+b2 ) - 1(b 1 ) - dr(b 1 )b 2

satisfies IR(b 11b2 )1 ( Mlb 2 1 1+61 + lbl l)(1 + lb2  ) for some positive constants N,

6, and a. Davis (3) requires that F be Prichet differentiable, AF (.b) be weakly

continuous in b, and IF(b)I + IdF(b)l, C x(1 + Ibia) for some K, a > 0 where I 1,

total variation norm of A1  Both of these conditions imply hypothesis i) - iii) in

-,.. corollary (3.2), and hence require that F e R(2). Thus, the condition that F e H(2) is

S-' more general, and, as will appear from the proof, the theoretically natural one for which

to state Clark's formula. Theorem (3.1) thus explains the conditions of Clark and Davisi

they guarantee the weak -differentiability of F.

To prove theorem (3.1) we first establish the following lemma, which is a direct

consequence of basic properties of the Nalliavin calculus.

(3.6) Lemma. Let a be a smooth Rk-valued cylinder function and assume a in -s

measurable. Let T > t. If F e H(2), then

d
Z{ i<DFlD(bi(T) - bi(t))>)

(3.7) 1

= z(rFa,b(T) - b(t)>,)

Remark. - D(b (T) - bi(t))(s) ()e where ei is the standard basis vector

with 1 in the ith position. Thus

d
(3.8) _ ai<DF,D(bI (T) - bilt)> - ( aD]'ls),a Ilt, (s)>d •

Proof of (3.6). It suffices to prove (3.6) when F is a smooth cylinder function also,

because, if P e H(2), (2.6) guarantees the existence of a sequence (F n  of smooth

cylinder functions such that lim IFn - F12 - 0. Since
n f

Ik-(F-Fna,b(T) - b(t)>}I

and < z 1/2 n )2 )z 1/2 (<a,/2 02 )/2)

-10-
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I3ra2i<D (VFn)' D(b1CT) -,t)11

4(31/2 10C D (- 12 31/2 12 I- 2

limits may be taken on both sides of (3.7) to prove the case F e R(2). Thus, assume F

is smooth and lot b b (T) - b i(t). From (2.14a) Aaj*1 - siAlli + (AaI,)*,, anb

* definition Ai - Therefore, using the self-adjointness of A

'7,~~3( X(DF,D*i) ) - 3(6i IAV9~ - IA - *~

- 3(FP~ihG± - FA - F(GiA~j + #~l

=- 23FPiA~i - ~i~

Proof of (3.1). it suffices to prove (3.1) for bounded, adapted simple process. For a

general bounded, adapted a(s), let anCs) be a sequence of simple process such that

limE 4 Is(a) U (s) I do - 0

Then it is a simple matter to show

him 3{V 4o <(C(S),dS(s)>) - (1 4o (6(s)&dO(s)>)

no"

Now, for simple functions, it Is enough to treat the case a(s) - a, (a), where
(t, 1

a is Itmeasurable and bounded. Lema (3.6) and the remark following prove this case

if, in addition, ai is smooth. To treat *as) - al CsT]() when a is not smooth,

choose a sequence of smooth, Ist-measurable, cylinder functions such that

3
him 01-6 n 0. It may easily be shown that

n+



%

S Er a(l T (s)daj li ha F Err 0n 511t.,ri Wn)

n.

5..,

- ha ZE <DF, f , nI(tldsH ]

, I( DI, ' 0 (t.,r] (sdS) )H

This completes the proof.

0

4. The Hausemann formula.

Let y - {y(t) 1 0 4 t 4 1) be the I1P-valued diffusion that solves

dylt) - m(t,y)dt + O(t,y)db
(4.1)

y() - yo

We as=* e a, M(ty) , o,11 - R - RN and O(t,y) , (0,1] X RN N d are Sorel

measurable in (t,y) and continuously differentiable in y for each t, b(t) is d-

dimensional, standard Brownian motion, and

sail < ,4 
1, j

(4.2

,.u 14 a 1 1, k( N 1 (j dt" sup Slyk

(4.3) sup Im(t,O)l + Ia(t,O)l 4 .

t(-1

Note that (4.2) and (4.3) imply that there exists a constant K such that

(4.4) sup Im(t,y)l + sup I@(t,y)I 4 K(1 + lyl)
t41 t(l

Standard existence theorems then guarantee a unique, strong, a.s. continuous solution

y(t) of (4.1).

-12-
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The equation of first variation associated to (4.1) is

d
dZ - ym(t,y)lZ dt + 3 3iy(ty)*Z dBO

(4.5) -
Z(O) - I

N

(in (4.5) a Ldenotes the ith column of a.) (4.5) has a unique, R a R1-valued

solution Z(t), which is invertible for each t. Indeed, W(t) - Z 1 (t) satisfies

d
* 2

dW- U * C- )ym(ty) + _ 1 yi(t,y)] ldt

d
(4.6) - a a yi(t,y)db

w(O) - I

Z(t)z' (a), 0 C s t C 1 then serves as a state transition matrix for (4.S).

Let 1 Is denote the total variation for signed, Ia-valued Sorel measures. Let

B - C([0olR N ) n {bib(O) - 0). In this section, we prove

(4.7) Theorem (Haussmann). Let P : B(N ) + Rt be Frichet differentiable and suppose

i) AF(b) is weakly continuous in b

(4.8) ii) jI(b)I + I AF(b)* 4 K(O + Ib a) for some K, a > 0

Then

(4.9) ,[V(y) f <Q(s),db(s),j - uCJ' <f(Sel ;(duuy)Z(u)Z-'(s)a(sy(s)),a(s))ds]

for every bounded .iB-adapted process (6(t) 1 0 C t -C 1).

(Remark. In (4.9), r is interpreted as a row vector.)

The condition (4.8) imposed on r is the same as that given in Davis [3]. However,

less restrictions are placed on m and a in the present treatment because we do not rely

on potential theoretic results. Haussmann's (S] original statement of the theorem actually

allows m(t,y) and o(t,y) to be causal functional* of y, although more stringent

regularity conditions are placed on F. We shall indicate below how the proof given here

might be extended to deal with such coefficients.

-13-
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Our strategy for proving (4.7) begins from the observation that y(.,b) is a

functional of Brownian paths and, hence, that F(y) defines the Brownian functional

G(b) - F(y(*,b)). Thus, roughly speaking, to derive (4.9) it is only necessary to show

that G 0 H(2) and

DOWlb)]'(s) - 1(3,11 11(dusy)Z(u)z1 (s)O(s,y(s))

and then to apply theorem (3.1). To be more precise, we actually need to show that y(tlb)

e H(2) and to compute Dy(t). In the case that m and a satisfy (4.2), (4.3) and, in

addition, possess slowly growing, continuous, second derivatives with respect to y,

Stroock (9, 101 establishes that y(t) D for every p , (see discussion after

(2.11)) and BE sup iy (t),2 p + IAYi(t),2p + IY (t)-V (t)IP) < -, I C i C 3, and
(0,11

Shigekawa (11] contains similar results. Thus when a and a are C2 , y(t) e 3(2) is

certainly true. In theorem (4.14) we extend this analyis by showing that y(t) e n H(p)1p)1

even if the C2  assumption is dropped, and by calculating Dy(t). The C2 assumptions in

previous work are necessary only to prove the stronger result that y(t) is in the domain

of the second order operator A. Since 0DI is a first order operator only continuous

differentiability of a and a is needed for weak H-differentiability of y(t). Theorem

(4.14) is the crucial step, and, once it is established, the proof of Hausmann's formula

follows easily. Thus, to extend this method to m(t,y) and s(t,y) which depend

functionally of y, it would be necessary to generalize theorem (4.14) appropriately and

obtain the natural analogue to equation (4.15) for Dy(t).

: We begin with some preliminary lamas. The first concerns how the property, F e H,
J p

behaves under the transformation #(F) for a function *.

* (4.10) LeMa. Lot * , * R be a CI function such that

n

%. for some K, a > 0. Let q ; (a+1) and F (Fi .... e (H(q)) n - 1(q) x..x 1(q).

Then if p 4 q/a+l, 4(F) e H(p) and

(4.11) D#(F(b)) , ((b))D (b)
3 i i

-14-
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in particular, if r e a(-), #(r) e R(O}.

Proof. (4.11) is straightforward to establish if * has compact support and F is a

smooth cylinder function. If V e (H(q))n , lot Vk * F in (1(q))n as k ** where

'S.. rk are smooth cylinder functions, and take limits in (4.11) still assuming * to have

compact support. when # does not have compact support let V,(x) - #(x)p(x/k) whore

P(X) e C1 , p(x) - I for JxJ 4 1, p(x) - 0 for xi" ) 2 and 0 ( p(x) 1 1, Vx. Take

limits as k * to achieve the final result. The condition p ( q/&+1 insures that

(D(#(F))p <-.

0

* -'. The second lama addresses a similar issue. What can be said about the weak H-

differ.ntiabily of the integral f(a,x(s))ds + 40 <a(sx(s)), db(s)> if x(t) is a

O-adaptod process such that x(t) e H(6 )  n NH, V t 4 17
p p

(4.12) Le ma. Let f(sx) t [0,11 x I? a, a(sx) : (0,11 x I? - Rd be measurable in

(s,x) and continuously differentiable in x for each a. Suppose that It(x)l +

;l-#- (x) 4 K(1 K + IxIa) for some K, a > 0 if # - f(Sx) or ai(sx), s 4 1. Let
Oxi (*

x(t) be a it-adapted process such that x(t) e af * t 4 1, IDx(t)|H has a measurable

version, and 1C(5uq] lx(t)lP + lDx(t)lp] < - for each p > 1. Then if

v(t) - 0 f(s,x(s))ds + 0 <(s,x(s)),db(s)>

v(t) e H(-) for each t, 0 4 t 4 1. Also Z[ sup lDv(t)IP ]  and a p depends

(0,11 H d

only on p and E1 sup lx(t)lP + lDx(t)l ].!+.. (0,1)

Proof. The proof is no different, except in notational complexity, if we aseom

- d - 1. Consider the first term z(t) - 4' a(s,x(s))db(s). Note that for each a,
f(in)

0 4 a 4 1, a(O,x(s)) e H(-) and a(s,x(s))[b(t) - b(s)] 6 H(  ) because of l1mma (4.10).

Furthermore I1 sup la(t,x(t))lP + IDa(t,x(t))iP - K < - for each p ) I where
(0,11n p

depends only on u[ sup lx(t)IP + lDx(t)j ] < --,K and a, for each p 1. mow let
[0,11

{T(m )) be a sequence of partitions of 10,1], and define

% -15-
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a (nsx(s)- W a(txlti, ( ]  (

£t eT I (i' 1+1

Using the method in Doob [41, p. 440, choose (T(m )) so that

,in 11 Ka(s,x(s)) - a (sx(s))I 8 - 0. Clearly, from the above, it follows thatp -

Zm "(t) ft am)(sx(s))db(s)

a~s)(tx~t I ) Ib+1 0 bt10

- ) (a) 2
is in 5), and, for each p > 1, lim nIs(t) - z (t)2 - 0. Thus to conclude that

:it) e - is is sufficient to show that sup KIlD (t)l 3 < - for every p.. in the
a

following, let b(At ) - blt +1^t) - blt ^t). we want to study

.n(t) <DsaC)(t), Dla )lt)'

( (4.13)) <D(a(t,xlt)Lb(At ), D(alt ,xlt ))bAt )H>

tift 1 6~ i i I

"or each I, Dja(ti,x(ti))bCAt)] - a(t/,x(t ))Db(bt) (CDa(txt ))b(At). Moreover, if

i 4 J, corollary (2.9) implies that

<Dalti,x(tI)), Db(At:j))>x - 0 •

Likewise, it is easy to compute <Db(Ati). b(At) ( - t - tiet)6ij. By applying

these identities, the individual term of (4.13) becomes, if i 4 J,

e Da (Da(tixlti))b(Ati)] , Dat 1 ,xlt )))> blA)

+ <Daltirxlt Il), Daltjlxlt l) H (ti+W t t tI t)6 ij

Buming and rearranging these terms in (4.13) gives

4 -16-
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( t) - 2 ft <Du ()(a), Da) (SO (dbls)

+ f. (IDaa)(s)l 2 + Ia () (s)g2 ]d

It follows from the Burkholder-Gundy inequality that

ZICn (t)l1 /2 4 K' fJ UI<Dz as, Da ()0HI2do

+ K.tP"l fo CIDa 3Cs)c)IP + °g)P]d

4 ( V;t (1 + 3IC ())l /2)Me . V

- V ft aI p/2)P/do + (t+tP )
Pa p

where I 'and K" depend only on p and XP independently of a. By the Gronwall-
P p

Sellman inequality sup lIDZ (m ) (t)Ip _ sup l lt)l p / 2 < _. This completes the proof fora aiU
z(t), and the term ft f(s,x(s))ds is treated similarly.

0

These results prepare us for proving the weak -differentiability of solutions to

(4.1).

(4.14) Theorem. Let y(t) be the solution of (4.1) and assume that conditions (4.2) and

* (4.3) are satisfied. Then y(t) e H( - ) for all t e (0,11 and

(4.15) Dy(t)(T) - 4O Z(t)z'(l)als,y())d .

We first prove

(4.16) Lema. Assume in addition to the hypotheses of theorem (4.14) that m and a are

twice continuously diferentlable in y and that the second derivatives are slowing growing

functions. Then y(t) e H( ) and (4.15) is valid.

Proof. Consider the usual Picard iteration

y(O)(t) M YO

y(n+lllt) - Y + ft (,,Y(n)l lld +  0t alsOylnl(s))db(s)

Stroock [91 shows that for each n, yn(t) . Dp, for all t and for all p > 1, and

-17-
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I0yln W(tlx has a meseurable version. Furthermore,

Ila sup ly~t) - y (n) (t)l' 0 p

(n () )
and sup IV sup (1y WhI)P + Ifty "'(t)l +~ IDy""(t)lp]1 < -. Lasna 4.12 implies that

n 0111
(n) Ca)

y (t) e for each n. From these observations it follows that y(t) e HN as

desired.

* it remains to prove (4.15I) under the added assumptions of the 1eas. Let h e R(

Tt)- fthW s),db(s)), and L()- QDkt,~

Then, using Stroock's (91 application of Nalliavin calculus to stochastic d..s

LCt) - Dkt) Nh~t

- Vyk(t).YWI(t)

- rt I Z, (4'y(s))C Wsds

ft* d aaf

(a)I1 :2 Cs,y(S))db (a)

0 f1, ok3~(s)h'(s)ds

In other words
d

dUt) - t'yt))OUtdt + 1 8 a (t)Mtt
y jai

+ a(t,y(t))hl(t)dt

C(O) 0 .

* 'p.The solution of this equation is precisely

tt -1
CUt) - 10Z(t)Z (G)c(s,y(s))h'(s)ds

t T
and Dyit)(rp - fo z~t)Z (s)a(o,y(s))ds follows directly.

Pofof theorem (4.14). Assume a and 0 satisfy (4.2) - 43.3tp9C~ c

that fJPdxmI and p 0, and lot p n(x) n p(nx). Define



*',) l tey) (Pn*Ult*)lly)

0(n)(ty) - (pn*O(t,'))(y)

dyn(t) - (n) (tleYn)t + )C n ) (tnds

yn(O) - 0
ad

(4.17) -t

it my be shown that m(n )  a and O + a uniformly on compacts as n * m. Moreover,

for each n, mn and O(n) satisfy the hypotheses of 1mms 4.12, and, there is a

constant K' such that

IC(n)(ty)j + la(n)(t,y)l 4 K'(I + Jyj), and

(C4.1) ( t,y) - m(n (tx)J + Ia(n ) (tx) - O(n ) (t,y)U

-C V' 13-Yl1

for all 0 4 t 4 1, for every n. These facts provide a sufficient basis to prove, with a

standard, Gronvall-ellman Inequality arguent,

4.19) haU Z( sup lyn(t) - y(t)lp) - 0
n-a 0(t41

for every p > 1.

By construction of m( ) and a(n) and 1mms 4.12, yn(t) t R(-) for each n.

Thus, proving

(4.20) 1lm SIDYn(t) - yip - 0
n 4

tT -1
for every p ) 1, where y(T) C 0 zt)U'(n)o(sy(s))da is sufficient to prove thattha

y(t) e H and Dy(t) Is given by (4.15). However, it is easy to see that (4.20) holds If

(4.19) Is true and

(4.21) ILm 2[ sup Isn(t) - Z(t)l p ] - 0
n- 0(t41

-19-
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(4.22) p( u, ,:'(t) - Z31t)I] - 0.a O~t(1l

for every p.- Ez 1,I1 2 ). Thus, to omplete the proof we need only verify these
2 Ij

limits.

An easy extension of theorem 5.2 in [121 shows that (4.18), (4.2), (4.3) and the

condition (4.23 below are enough to guarantee (4.21),

Vt 4 1, C > 0, N < -

(4.23) nlm P( shpI y a(n) (t - m (ty)l1 > ) - 0
n +M IZl22 4H

lim P( sup I~ Ica 0 1()' ft-yai(,Y)I-
1' 12 i-I

P
Since a m(ty) is continuous in y, a m(t'y) * a (ty) an n + - for each t, and,

y y n y

since 3 m(n) * m uniformly on compacts as n-+ -, and sup zlyo(t)1
2 <-

"mn) (t,y) a m(ty) as n for each t. This proves that
y 7

3ya a ) 3 a m(ty), a which is enough to verify the first limit in (4.23).

Completely analogous arguments demonstrate the limits in (4.23) involving oi. This

completes the proof of (4.21). Since Z-. satisfies equation (4.6), and Z- (t) the

-) -

analogous equation with i and a replaced by m (n) and a(n), (4.23) and the
* .

additional condition
d*'i ~ d ()n 2 yly] 2

lim P( sup IZ( a n(t.yn) 2 l > ) - 0

n+ - Izlat - y n 2

for every 0 4 t 4 1, 6 > 0 and N < -, suffice to imply (4.22). But, this last

condition is true by repeating the arguments from (4.23). This completes the proof.

0

Proof of theorem 4.7. First suppose that the theorem is true if, in addition to satisfying

the hypothesis of theorem 4.7, 7 is a cylinder function F(x) 4(X(t ),...,x(tn)). In

this case, note that (4.8) implies # is C1  and

(4.24) lxl + I L lxlI ( K1 + Ixa)

-20-
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To prove the general case, let (Tln) be a sequence of partitions of (0,11 and define
(n) (x)v -h general. Then squn

x for x e 3 as in the proof of lemma 2.8. Likewise, define Fn(X) - F(x(n)). Then

if F satisfies (4.8), lim F n(y(e,b)) - F(y(o,b)) a.s. and there exists a subsequence
n4

* nk such that

F

lia 0 z(8,11 A (dsy)Z(t)Z- (s)o(sy(s))las)db(s)

(4.25)

=0 (s,1] AF(dsiy)Z(t)Zll sao(s,y(s))la )db
ls)

A nice proof of (4.25) is given in Davis (31 and will be omitted here. Now if (4.7) is

true for cylinder functions

(4.26) F (y(0.0)) = A, (d;y)Z(t)Z-1(s)a(s,ylsl)IB*Idbls)
n 0O~(,)(~~sys)3lbs

using (4.25) to take limits, we find that this equation is true if Fn is replaced by

any F satisfying (4.8). Since (4.26) and (4.9) are equivalent, this completes the proof

once the cylinder function case is established.

Thus let

F(y) - *(y(t 1 ) ..... Y(tn)) = *(Y)

Since y(tl ) 6 H
(-)  for 1 4 i 4 tn o and since # satisfies (4.24), we find from lemma

( (4.10) and (4.15) that r(y) e H( -) and

DFly)'(,6) =-)~ i )z l Ztl (sl0ls,yls)llIsWt}

iI lduylZu)Zi 11i)0l'y18))

For such F, (4.9), and hence (4.26), are direct consequences of Clark's formula (3.1).

-21-
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